13 research outputs found

    A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity.

    Get PDF
    Endocrine disrupting compounds (EDCs) are a persistent threat to humans and wildlife due to their ability to interfere with endocrine signaling pathways. Inspired by previous work to improve chemical hazard identification through the use of toxicogenomics data, we developed a genomic-oriented data space for profiling the molecular activity of EDCs in an in silico manner, and for creating predictive models that identify and prioritize EDCs. Predictive models of EDCs, derived from gene expression data from rats (in vivo and in vitro primary hepatocytes) and humans (in vitro primary hepatocytes and HepG2), achieve testing accuracy greater than 90%. Negative test sets indicate that known safer chemicals are not predicted as EDCs. The rat in vivo-based classifiers achieve accuracy greater than 75% when tested for invitro to in vivoextrapolation. This study reveals key metabolic pathways and genes affected by EDCs together with a set of predictive models that utilize these pathways to prioritize EDCs in dose/time dependent manner and to predict EDCevokedmetabolic diseases

    ATR-IR fingerprinting as a powerful method for identification of traditional medicine samples: a report of 20 herbal patterns

    No full text
    Background and objectives: Attenuated total reflectance-inferared (ATR-IR) spectra can be used as a non-invasive fingerprinting approach in quality control of herbal samples. Methods: Twenty versatile herbal samples were subjected to attenuated total reflectance-inferared (ATR-IR) spectroscopy followed by different clustering methods in order to determine by which method more reasonable classifications would be obtained. Results: All classification methods (K-means, HCA, PCA and SOM) were able to discriminate the two medicinal seeds, Hyocyamus niger and Peganum harmala from other herbal samples. Similarly, the starch samples were clustered in a reasonable method. In HCA, one cluster included three types of starch samples: Zea mays, Oryza sativa and Triticum aestivum. All the four classification methods were able to separate Solanum tuberosum starch from other starch samples. HCA and SOM, were able to classify leaf samples Origanum vulgare and Melissa officinalis belonging to Lamiaceae family, in one category. Crocus sativus and its adulterant Carthamus tinctorius flowers were identified by PCA, HCA and SOM as different categories. Conclusion: The result of this study can be utilized for identification and quality control of traditionally used medicinal plant samples in an unknown sample powder. Such data could be the basis for preparing a data bank on Iranian medicinal samples which in turn is used as a simple, fast and reliable method for characterization of herbal powders in Pharmacopoeias

    ATR-IR fingerprinting as a powerful method for identification of traditional medicine samples: a report of 20 herbal patterns

    No full text
    Abstract Background and objectives: Attenuated total reflectance-inferared (ATR-IR) spectra can be used as a non-invasive fingerprinting approach in quality control of herbal samples. Methods: Twenty versatile herbal samples were subjected to attenuated total reflectance-inferared (ATR-IR) spectroscopy followed by different clustering methods in order to determine by which method more reasonable classifications would be obtained. Results: All classification methods (K-means, HCA, PCA and SOM) were able to discriminate the two medicinal seeds, Hyocyamus niger and Peganum harmala from other herbal samples. Similarly, the starch samples were clustered in a reasonable method. In HCA, one cluster included three types of starch samples: Zea mays, Oryza sativa and Triticum aestivum. All the four classification methods were able to separate Solanum tuberosum starch from other starch samples. HCA and SOM, were able to classify leaf samples Origanum vulgare and Melissa officinalis belonging to Lamiaceae family, in one category. Crocus sativus and its adulterant Carthamus tinctorius flowers were identified by PCA, HCA and SOM as different categories. Conclusion: The result of this study can be utilized for identification and quality control of traditionally used medicinal plant samples in an unknown sample powder. Such data could be the basis for preparing a data bank on Iranian medicinal samples which in turn is used as a simple, fast and reliable method for characterization of herbal powders in Pharmacopoeias

    Authentication and quality control of some polyherbal oils used in Persian Traditional Medicine (PTM)

    No full text
    Background and objectives: Traditional polyherbal oils are still in use in Persian Traditional Medicine (PTM). Most of these formulations are prepared via traditional procedures such as maceration of herbs in oils or evaporating aqueous herbal extracts in boiling or heating oils as the vehicle. Thus, their quality control, standardization and authentication are real challenges due to the lack of scientific studies.  The present study provided data and methods to authenticate some of these oils and has compared applicability of different fingerprinting methods for their authenticity. Methods: Thirteen oils were prepared according to the traditional manuscripts. High performance thin layer chromatography (HPTLC), ultraviolet (UV) and infrared (IR) fingerprinting data were analyzed using MATLAB software. For HPTLC fingerprints a special coding system was designed according to the Rf values. The fingerprinting data were subjected to principal components (PCs) analysis. Melting point and thermal behavior of the oils were obtained by differential scanning calorimetry (DSC). Also, the refractive indices, acid and peroxide values were obtained for the oils. Results: The designed coding system for HPTLC was successfully able to produce a discriminative unique fingerprint for each sample. Among UV, IR and HPTLC fingerprinting, the last one seemed more reliable than others to authenticate the oils. The acid values (0.22-3.85), peroxide values (2.31-34.35 meq/kg) and refractive indices (1.4622 - 1.4706) were in acceptable ranges for most of these oils. Conclusion: Despite lack of knowledge about constituents of traditional polyherbal oils, this study was able to provide some data and fingerprinting methods for their authentication
    corecore